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Foreword

This report smnmarizes tile research accomplishnmnts performed under the NASA

langley Research Center Grant No. NAG 1-1749, entitled: "Application of the Spec-

tral Element Method to Interior Noise Problenls," for the period August 1, 1995 to

July 31, 1998. Tile primary effort of this research project was focused on the devel-

opment of analytical methods for the accurate prediction of structural acoustic noise

and response. Of particular interest was the development of curved frame and shell

spectral elements for the efficient coInputation of structural response and of scheines

to match this to the surrounding fluid.



Contents

Foreword i

Table of Contents ii

Introduction 1

Deep Curved Beams and Rings 2

1.1 Introduction ................................ 2

1.2 Spectral Analysis of a Deep Curved Beam ............... 3

1.3 Discussion of the Spectrum Relations .................. 6

1.4 Point Excitation of a Curved Beam ................... 8

1.5 Spectral Element Formulation ...................... 10

1.6 Point Excitation of a Closed Ring .................... 13
1.7 Discussion ................................. 15

Appendix A ................................ 16

29

2.1 Introduction ................................ 29

2.2 Spectral Analysis of a Cylindrical Shells ................ 30

2.3 Discussion of tile Spectrum Relations .................. 34

2.4 Spectral Element Formulation ...................... 36

2.5 Point Excitation of a Shell ........................ 39

2.6 Discussion ................................. 41

2 Long Segmented Cylindrical Shells

51

3.1 Introduction ................................ 51

3.2 Plate/Fluid Interaction: Infinite Plate ................. 53

3.3 Waveguide Modeling with Fluid Loading ................ 55

3.4 Modeling of Finite Plates in a Fluid ................... 57

3.5 Discussion ................................. 61

3 Acoustic Radiation from Plate Structures

References 72

ii



Introduction

This report summarizes research to deveh)l) a capability for analysis of interior

noise in enclosed structures when acoustically excited by an external random source.

Of particular interest, was the application to tile study of noise and vibration trans-

mission in thin-walled structures as typified by aircraft fllselages.

The basic idea of the research is to reformulate the structure-fluid interaction

problem using a matrix methodology based on the spectral element method. In

this way, a wave analysis of the problenl is retained, yet coInplex structures can be

handled in a convenient manimr. Tile analysis, which is fi)rmulated in the frequency

domain, is capable of t)roviding detailed information on the rest)onse (in either the

time or frequency domains) to broad band excitation in any frequency range. The

two significant features of the problein, namely; that the loadings on the structure

are distributed and that the structures themselves form enclosed cavities (or cabins),

are handled well by this formulation.

The spectral element method is a t)owerflll tool for wave i)rot)agation problems. It

is a matrix method based on wave solutions that exactly satisfy the governing equa-

tions and the boundary conditions. That is, the method exactly models tile inertia

l)roperties and therefore the elements can be large, in fact spanning the region between

discontiimities. Consequently, the system size is much smaller coint)ared to a conven-

tional element formulation. Furthermore, the effects of damping, viscoelasticity, and

higher order structural models can be easily incorporated in the forinulation.

This report focuses on three related topics. The first concerns tile developinent of a

curved frame spectral element, the second shows how the spectral element inethod for

wave prot)agation in folded plate structures is extended to problems involving curved

segmented plates. These are of significance because by combining these curved spec-

tral elements with previously presented fiat spectral elements, the dynamic resI)onse

of geometrically complex structures can be determined. The third topic shows how

spectral elements, which incorporate the effect of fluid loading on the structure, are

developed for analyzing acoustic radiation from dynamically loaded extended plates.



Chapter 1

Deep Curved Beams and Rings

Using the curved beam equivalent of Timoshenko beam theory, the spectral element

method is extended to problems involving curved members. By combining these

curved beam spectral elements with previously presented straight spectral elements,

tim dynamic response of geometrically complex structures can be determined. Of

particular interest here is the coupling that naturally occurs between the axial and

transverse degrees of freedom and how it affects the element formulation. As an

example of the utility of this element, the point excitation of all infinite curved beam

and a closed ring is demonstrated.

1.1 Introduction

There is considerable intrinsic interest in waves in curved beams because of their use

as arches, helical springs and rings, in such structures as aircraft fuselages and ship

hulls. Some idea of the range of applications can be found in References [1, 2, 3, 4].

There is also the special case of negligible bending stiffness which corresponds to waves

in cables and power lines; an interesting analysis of this is given in Reference [5]. This

chapter is a continuation of References [6, 7, 8] which developed a matrix methodology

for analyzing wave propagation in complex frame structures. Specifically, we extend

the spectral element method to include deep curved beam elements.

Two elements are derived: a semi-infinite element, termed a throw-off element,

and a finite length element, termed a two-noded element. The throw-off element is

important in wave propagation problems since it is used to model remote boundaries

which do not reflect waves. Both of these elements exactly model the distribution of

mass and rotational inertia and thus can be of any length. While it is possible to

model a curved beam as a collection of straight or curved segments, as in conventional

element fornmlations [9, 10], the fact that spectral elements call be very long means



that we needuseonly oneelementbetweenany two joints or points of discontinuity.

An interesting aspectof curw_dbeamsis the coupling that occurs t)etweenthe

longitudinal and flexural degreesof freedom. The coupling is interesting in the fact

that purely axial or transverseexcitations will causeboth longitudinal and flexural

responsesin the curved beam. Unlike straight beam inodeling wherethe coupling

betweenthe degreesof freedomoccursonly at attachment nodes,the curved 1)earn

possessescoupling at the differential level. That is, the hmgitudinal and flexural

motion of the curved beam are coupled through the equations of inotion, an(t results

in a spectrum relation that is relatively complicated. Therefore a portion of this

chapter is devote(l to discussing the spectrum relation in some detail.

\Vhile curved elements can be combined with straight elements to form geometri-

cally complex structures, we will not emphasize that aspect of their use. [lather, we

wish to focus specifically on some of the wave propagation aspects. We look at two

prot)lems: an infinite curved beam and a closed ring. The infinite beam is used to

demonstrate the coupling between the longitudinal and flexural degrees of fi'ee(lom.

The ring illustrates how the point excitation of a simple structure can be viewed as

either a wave propagation problem, a vibrations prot)lem, or a rigid body motion

prot)lem.

1.2 Spectral Analysis of a Deep Curved Beam

Consider the curved beam segment shown in Figure 1.1. Folh)wing Reference [10],

the 2-D deformation of the beam can be apt)roximated as

where u(s, t) is the mean mid-plane circumferential displacement, v(,_, t) is the radial

displacement, and 0(,_', t) is a rotation about the mid-I)lane. This deforination leads

to the non-zero strains

0u v 0¢ u 0v

Other curved beam theories have slightly different expressions h)r these strains; the

present theory is closest to that of the Timoshenko straight beam [11]. The most

significant aspect of this strain-displacement relation is the non-zero centroidal strain

(at y = O) even if v is the only deflection. This will give rise to the coui)ling of the

two displacements.



The strain energyfor the small segmentof curved beamin planestressis

l -2 , v)2+Ei(os)'_+GAKl(__+__s_¢)2]dsu = _ [Eds+a_.,.]dV= _ lEA( R

where E is the "_bung's modulus, G is the shear modulus; EA, GAK1 and EI are the

extensional, shear and bending stiffnesses, respectively; V is the volume and L the

segment length. Note that, as is commonly done, we have associated an adjustable

KI with the shear stiffness. Typically, this can be taken close to unity; Reference [11]

gives a discussion of the choice of K, for tile flat Timoshenko beam. The total kinetic

energy is

, L ._ ._2 fr= p[,_(.%v,t)+,, (s,y,t)]dv = ' + +T :_ 7 [PAit'_ PIK2_2 pAil 2] ds

where p is the material density. Here too we introduce an adjustable parameter/t" 2

to be associated with the rotary inertia. An application of Hamilton's principle [12]

using the variations with respect to 5u, 6v, and 6¢, leads to the three governing

equations of motion (for R= locally constant)

O0 .0% Ov

EA Os R 2 + GAK_ _ -t- 082 -_8 : PA-_2 + '_lA--_

r°-"
F - o,,_,dA = EA [0.',"

ES [&<>.2j+GAS,& +_-,_ = ,oSh2-D-77-2+.dK:2 (1.1)

where we have added solne viscous damping 1/. The associated natm'al boundary

conditions are given in terms of the resultant forces

, V =_ a_udA = GAK1 + _ - ¢ (1.2)

and nioment

acting on the cross-section, where the integration is over the cross-sectional area .4.

When R becomes very large, the straight deep beam and elementary rod theories are

recovered.

Spectral analysis assumes solutions of the form

(1.4)
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wheretile summationsareoverfrequency.When thesearesubstituted into the govern-

ing differential equations,weget a setof ordinary differential equationswith constant
coefficients.Thesehavesolutionsof the form

where k = k(w) is the wavenumber. In this representation, tile amplitudes uo, vo,

0o, and the wavenumber are as yet undetermined. On substitution these lead to the

homogeneous system of equations

-(EA + GAK,)ik/R <_2- EA/R 2 il_GAlx'l vo

GAKI/R -ikGAK1 (_3 - GAK1 Oo

= 0 (1.5)

with

(_l =- -EAk '2 + pAJ, _2 =- -GAKLk '2+ pAfJ, (_3 =- -Elk 2 + PlK2(v '2

and 5_:'2 =_ w 'e - iwq/p. For a non-trivial solution, the determinant must be zero and

this allows us to determine k. This has six solutions in all, lint since only k 2 terms

appear, there are three |)asic modes appearing as q-k,,, pairs.

For each wavenumber k,,z, Equation (1.5) gives us the relation among the aml)li-

tudes. This is homogeneous and therefore, at best, we can only get amplitude ratios.

For example, we can solve for the remaining two terms as a flmction of uo. Let us

writ(, the solutions at a particular wavenumber k,,, as

{1/?'o : (I)v

Oo m (I)o m

where the symbol (P indicates an amplitude ratio. Although the vector {_} shown is

normalized with respect to Uo, it is possible for other modal vectors to 1)e normalized

differently. This must i)e done for each mode km and hence there are six vectors. We

choose t.o represent these as

[ ]: [[eA],[¢,,1]- { 1/
where the [3 x 31 partitions [q)A] and [dpB] are evaluated at +k,, and -/%,, respectively.

The matrices [q_A] and [_B] are referred to as modal matrices. They are fully popu-

lated matrices and typically are not symmetric. The normalizations are arranged so



that if we set 012= O1a= 021= O31= 0, tile uncoupledstraight beam solutionsare
recovered.

For each mode, the correspondingamplitude Uom is undetermined; to make the

notation resemble what we have already used, we will label each of the these A, B, • • •

The solution for the displacements can then be expressed as

_(s) = AOll e-ikls + BO12e -ik2s +...+ E015 e+ik2s + F016 e+ik3s

"g_(8) = A021 e-ikls + B022 c-ik2s + ... + E(I)25c +ik28 _- F026 e+ikas

()(_) = A03,e -ik''_ + BO32c ik_,_+... + EO35e+ik2_ + F036e+ik:,._ (1.6)

where the terms Oij are the amplitude ratios. Tile coefficients A, B,..., F are to be

determined from the boundary conditions.

It is apparent that the spectrum relation plays a central role is the solution, and

since tile characteristic equation is rather complicated, we look at its solution in

greater detail next.

1.3 Discussion of the Spectrum Relations

The characteristic equation to determine the waveimmber k is formed by setting

the determinant of system (1.5) to zero. To simplih_ the expressions, first introduce

the wavenumbers k_ = pA&2/EA, k2s = pAw2/GAKI, k2 =- pI&2/EI, and k_ =

pA&2/EI. On expansion, we find the characteristic equation ('an be rearranged as

k 6 + a2 k'l -4-a l[_"2 -t- ao = 0 (1.7)

where

._ = -(k_ + kg+ k_+ 2/_ _)

_ _ _ _ _ k__2k_)/R _+I/R _aa = kpk s + kPk t + ksk 1- k 4 - (k_ + s

ao = (-k_ + l/R 2) u 2(ksk, - k_.- k_/__)

This has six solutions in all, but since only k 2 terms appear, there are three basic

modes appearing as +ki: one associated with the longitudinal behavior and two

associated with the flexural behavior. This can be seen by noting that for very large

R the characteristic equation can be factored into

(k_- k_)[k_- (k_+ _,_)k_- (k_- k_k_)]= 0

where the term in parenthesis is the characteristic equation for the longitudinal motion

in a rod [11] and the term in the square brackets is the characteristic equation for



the uncoupledflexural responseof a Timoshenkobeam [6]. In general,of course,the

modesare coupledand it is not proper to speakof a longitudinal modeor a flexural
mode.

Beforewesolvefor the spectrunl relations,it is beneficialto checkcertain features.

First, weseeif there is a cut-off frequency;set k = 0 in the characteristic equation to

get

.o = + - - = o

Alter setting the damping to zero, this yields the two cut-off frequencies,

1 E_ co ,/GAK1 aAh, 2Co
_'cl = R V p A -- -R ' cv_._= V -_ + p A R_ _ h

where h is the depth of the beam. The presence of a cut-off frequency is typical of

elastically coupled systems. It is interesting to note that _vcl depends on the radius of

curvature, while _v_2 is dominated by the beam depth. It is clear from the expression

for cv,.2 that for slender beams, this cut-off frequency is verb' large; this cut-off is

associated with the Timoshenko second mode.

Now look at when the frequency is zero, tile characteristic equation can be factored

as

1 1

m) = 0

Only one root. goes through zero, the others are a double root on the real axis.

We must solve a cubic equation in order to get the full behavior of the spectrum

relations. The formulas for doing this are more complicated than for the quadratic

equation and can be found in Appendix A. Figure 1.2 shows the first, three spectrum

relations, these correspond to propagating waves, and are characterized by a negative-

only imaginary component. To exagerate the coupling, the plot is for an ahlminum

beam that is 100ram (4.0 in) deep with a radius of curvature, R = 100ram (4.0 in).

We clearly see the cut-off frequencies in the first and third modes. Note that ka has

a negative real component at low frequencies and it might, therefore be thought that

this violates the radiation condition for waves propagation in the positive direction.

In our approach, the waveImmbers always have an imaginary comt)onent even

predominantly real-only modes such as k2 have an imaginary component arising from

the damping. Thus the criterion is based on dissipation of energy in the positive

direction. A negative real compouent is expected to lead to a standing wave.

For the later examples, we will use all aluminum 1)earn that is 25.4mm (1.0in)

deep with a radius of curvature, R = 254mTrt (10.0in). The spectrum relations

for this t)eam are plotted ill Figure 1.3. Only the cut-off frequency in the first mode



appears in the frequency range of interest. In the low frequency region (0-500 Hz), we

see some coupling effects due to the thickness of the beam. This coupling diminishes

as tile radius of curvature increases.

In order to better understand what the spectrum relations are doing, it is worth

while to consider a set of approximate spectrum relations. The three roots of the

characteristic equation with relatively large R/h ratio can 1)e approximated nicely

from the straight beam case as

kl = + k_, R2

k2 = 4- _+ (k_+k_,)+ k4+ (k__k_)2+4R _

],'3 = + _+_(k_+k_,)- k_+ (k_-k_) 2+4R--- i (1.8)

where kl is tire longitudinal dominated mode and k2 and k3 are the flexural dominated

modes. These approximations, also plotted in Figure 1.3, allow us to make a few

statements about the behavior of the coupling. In comparison to the uncoupled

modes, the major effect is in the longitudinally dominated mode. It can be seen that

the behavior is similar to a rod with elastic constraint [11], that is, it is imaginary-

only up to the cut-off frequency and then becomes real-only. Thus the low frequency

components evanesce indicating a transfer of energy to the other modes. The 1/2R 2

terms in k2 and ks are acting like a compressive pre-stress on the beam [11]. This

has the effect that for the propagating flexural mode the group speed is increased

indicating an effective increase in stiffness. However, the coupling generally will not

cause drastic changes in the spectrums of the flexural dominated modes. Indeed, if

h _ R/100, it is clear from Figure 1.3 that the only difference is in the first mode.

Finally, notice how the spectra are ahnost identical to the uncoupled spectra at the

higher frequencies.

1.4 Point Excitation of a Curved Beam

As a prelude to considering curved beams of finite length, we begin by looking at

the point excitation of an infinite curved beam; physically this would mean that the

beam is in the form of a helix. We will use two types of force histories, one that is

relatively broad-banded in frequency and two that are relatively narrow-banded, in

order to demonstrate how the coupling of the modes changes with frequency. These

are shown, along with their normalized amplitude spectrums, in Figure 1.4.

8



Our approachto the solution parallelsthe pr<)t>lenlspresentedin References[6, 8,

11];what makesthis caseinteresting is that wenow havethree coupledmodes.The

solution for the forward propagating t.erinsis written as

+,(,_)

= AO_11c -ik_+ + B'I'r2c ik.,s + CdPl3c-ikas

= A+21c -ikl' + B(I)22 c-ik2s + C(I)23 C-ik3's'

= Ad_ale -ikls + BdP32 c-ik'2s + C_33 e-ikss (1.9)

From the free t)ody diagram of the excitation region of the infinite beam it can be

shown that at. the loading site s = 0,

,_(0,t) = 0, 0(0,t) = 0, v(0, t) = -½P(t)

where we are considering a transverse fi)rce excitation. The first, two of these allow

the solution to be written as

_(._)

i,(,_)

5(,_)

t_- ik , ,_ ,3O_l:¢,- ik,_,,]= A[_11 + a(I)12e -_ik_" +

= A[_21 c-ikls + odP22 e-ik2s +/}dp23e -ik:_s]

= A[d_31c -ikl,_ + 0.d232c -ik'2s + _dP33e -ikss]

where the coetIieients c_:and fl are given by

(I) 11(1033 -- (1)31 (1)1.3

(t ¸= , ,_=
(1)12(1)33 -- (1)32(I)13

\'_ determine A from the shear relation

l p = I" = GAKl
2

(b,lq)32 - q_a_q_t_

(I)13(I)32 - (1)33(I)12

After differentiation, this leads to

_/5 1
A = 2GAKI[ql + aq2 +/3q3] ' q,,, = _(I)lm -- ikl_2,,, -- (I)3,n

The solution is arranged so that if we set R = oc then _12 = _I'ta = (I)21 : (I)31 : 0,

and the uncouple(1 straight I)eam solution is recovered. Care must t)e taken, however,

in order to approach the proper limit since both ct and /_ approach infinity. It turns

out that a/3 = 1 in the limit and we get, for example,

_P
.,-ik2s (,-ik3s]5(._)= 2EI(k_ - #_)[_ -

Note that the spectrum relations also change.



The velocity reconstructions for the broad band input are shown in Figure 1.5.

There are two t)oints of interest. First, note how the initial zeroaxial velocity even-
tuallv t)ecomessignificant. Second,note the oscillatory I)ehavior of the transverse

velocitv. Although the force excitation lastsonly about 200p,,s, the beam near s = 0

c(mtimws to oscillate in an almost resonant like fashion. Actually, a standing wave

has been established. The figure also shows the separate contributions from each

mode tbr the response v(s = 3R, t). It is clear that the first mode is contributing the

ringing behavior.

This is more evident when we look at these velocity responses in the frequency

domain. It is clear in Figure 1.6 that there is a peak in the v-velocity response which

corresponds with the cut-off frequency. Furthermore, this peak is coming entirely

fronl the first mode. The broadband excitation has identified the cut-off frequency in

the first mode.

A final point of interest for this example is the eflbct of the cut-off frequency of

the longitudinal mode. Below this frequency there is only one propagating mode in

the beam, while above the frequency two propagating modes exist. To illustrate this

point, we excite the curved beam with the narrow banded force histories shown in

Figure 1.4. The pulses are chosen so that they just bracket the cut-off frequency.

Figure 1.7 clearly shows the presence of the second propagating mode above the

cut-off frequency. Note that the two propagating modes are present in both the

transverse and longitudinal responses but the amplitude ratios are different. This

plot is emphasizing the nature of the solution of Equation (1.6) as a collection of

mode responses.

1.5 Spectral Element Formulation

As seen from the point excitation example of the last section, the formulation, al-

though relatively straight forward, requires a significant amount of manipulation. A

sinfilar approach for connected curved t)eams or even for a finite curved beam would

be very cumbersome, hence we now develop a matrix formulation to facilitate these

manipulations.

Consider a segment of curved beam of length L. We begin by expressing the

displacements as

0(,)

= A(I)lle_ -ikls + Bq)12c -ik''_ + ... + Ed215 c-ik2(L-s) .__ Fd216e-ika(L-s)

= Aq),21e-ik_s + B4P.22e-ik2s + ... + Ed22_e-ik2(L s) + F_26c-ika(L-s)

= AdP31 e-ikls Jr- B(_32 e-ik2"s -[- ... + E(_35 e-ik2(L-s) + Fr_a6e-ika(L-s{1.10)

lo



Tile length is introduced to include reflectionscoming froiil a boundary located at

s = L. This disl)lacement solution can now be re-written as

{_(.,),,,(._),,(,_)}T = {u}(,_)

= {(I)}lAc iklS +... + {q)}6Fc-ik3(L-._)

\\)_ will re-write this in an even more compact matrix fi)rm: so as to make the Inatrix

notation a little more accessible, we will take the developments of the rod as the

archetype and use its notation (except changed to matrices). The 1-D solution for a

rod [11] is represented as

'[t(3:) ---- [t'-iklX]A -'l-[C ik'<L-_>]B

where A and B are associated with the forward inoving and backward moving waves,

respectively. The displacement for the curved beam is written as

{/./}(,_)= [¢'A]Fe(_')J{A} + [¢_u]Fc(L- s)J{B}

were [_A] or [qbu] are the [3 x 3] partitions of[ q5 ] and

[e(,s)J _= 0 c -_k'-'_ 0 , {At = B ,
0 c -ik_" C {°}{B}- E

F

It is the 1)resence of the amplitude ratios that is the most significant difference.

V_ wish to replace the vectors {A} and {B} in terms of the nodal displacements

at. s = 0 and .s = L. That is, we introduce

'[l(O) = '[tl , ?)(0) _-"l_l, _)(0) : _l ; '[I(L) = '[12, {'(L) -_ _:'2, _(L) _- 02

We write this in matrix notation as

{'_1,'U1,_1}T= {UIl = {2/_}(8= 0) = [q_a][e(0)J{A}-[qs.][e(L)j{B}

{i,2, i,2,¢2}r = {u}2 = {u}(s = L) = [0AI[e(L)J{A} -[_.]re(0)J{B}

Let us write all six equations as

{u}2 {B}

Solving for the coefficients gives

{At {u}, u}_{BI}=[o-ll{{u}2i=[Gl{}u}2}= [ [G''I[G,2,]

11



where each partition of [ G ] is of size [3 x 3]. We are now in a position to write the

displacenwnts in terms of the shape functions. They are

{U}(_') = [.q(._)]_ {u}, + [g(,_)]2{u}_ (1.11)

where tile [3 × 3] matrix of shape functions are defined as

[g(s)]2 = [_a][e(s)J[G,2] 4-[¢PBI[e(L--s)J[G221 (1.12)

There are a total of 3 × 3 × 2 = 18 shat)e functions in all. While not obvious from the

above, it turns out that, even in this general (:as(:, the collection of shape functions

associated with the degrees of freedom at the second node are the mirror image of

the first set.

Figure 1.8 shows the g_2(.s) shape function of a 270 ° beam segment at a number

of frequencies. This shape function is associated with the fh degree of freedom and

thus can be t)lotted as a radial displacement off the original shape. It is similar to

conventional shape functions except, that it is frequency dependent, typically com-

plex, and can represent the behavior of very large beam segments. The other shape

functions behave in a similar manner. It is clear from this figure and from the above

developments, that once the nodal degrees of freedom are determined that the shape

fimctions can be used to compute the responses at any intermediate locations. This

is a crucial attribute since the beam segments or elements can be very long.

The next step in the element development is to derive a stiffness relation for the

beam segment. The process is simply that of expressing the resultant forces and

moments fl'om Equations (1.2) and (1.3) in terms of tile displacement solutions given

in Equation (1.11). We can write resultants associated with the boundary conditions

in terms of the displacements in matrix h)rm as

{gr}(,s .) = {F, I, M}T(s)= [ 0 ]{U}(s)

where [ 0] is the matrix collection of differential operators of size [3 x 3]. After

substituting for {L/}(s) in terms of the shape functions get

= [ 0 +[ 0

- [Oq(s)]l{u}, + [Og(s)]2{u}2 (1.13)

Relating the member resultants at s = 0 and s -- L to the nodal loads at the same

locations leads to the stiffness relation

{{F}I = {..,},[+Og(L)], [+09(L)]2]{ }{u}2 (1.14)

12



or simply

{//'} = [_(_)]{_)}, {F} = {/c,, I"_,5Ii; /_2, I_72,,_(I2}"/' ,

where [ ]¢' ]is the [6 x 6] dyimmic element stim, ess matrix.

frequency dependent, complex, and symmetric.

For illustrative purposes, Figure 1.9 shows the normalized ]_'11,/_'22, and kaa diago-

nal terms for the same beam used to illustrate the shat)e flmctions. As is typical with

spectral elements, they exhibit a very large (twmmic range. Tile normalizations are

with respect to the stiffnesses for straight thin beams [12]. That is, they are presented

as

k,1/(EA/L) , ]¢22/(12EI/La), ]_:a:,/(12EI/L)

Note that the _:lt stiffness is substantially less than the elementary rod values, and

it. is only after the cut-off frequency (_ 3 kHz) does it become greater than unity.

This (:an be understood I)y considering tlle static (low-frequency) axial loading of the

beam fixed at one end -- because of the curvature, the axial load creates a moment

and consequently, the beam has a great deal more flexibility than the corresponding

straight case.

The stiffness relation for the throw-off or semi-infinite element is simply

{F}l = [-0g(0)],{n}, = [_:(co)]{u},, [g(s)], = [(I)A][e(s)J[Gl,] (1.15)

The stiffness matrix in this case is a [3 x 3] frequency deI)endent, comph, x and symmet-

ric matrix. This can be used to recover the results presented for the point excitation

of an infinite or semi-infinite curved beam

{'/1} _ {/)1, 1_'1, (_1; U2, 1'32, (_2} T

This stiffness matrix is

1.6 Point Excitation of a Closed Ring

The advantage of the curved element is that it. can be combined with other elements,

either fiat or curved to form significantly more complex structures. References [6, 13]

discuss the prograinming structure required for multiply connected spectral elements.

However, we will not emphasize this aspect of their use, rather, we will perform the

examt)le of the point excitation of a closed ring. The example demonstrates the basic

method of joining elements in addition to demonstrating the utility of the spectral

method.

We form the closed ring by combining two curved elements of the same material

properties each of which is a half-circle. Because of symmetry, we could model the

ring with a single half-circle element or as a single whole-circle eleinent. In the latter
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case, half of the applied load must be placed at each node and the extra conditions

of ul = 0, ¢1 = 0; 'u2 = 0, 02 = 0 be imposed. The two element model was chosen so

as to verify the assemblage process.

The elements Call be joined at the common nodes by merely summing together

the appropriate dynamic stiffness matrix components to form a global stiffness matrix

[/_" ]. We must therefore first rotate each element stiffness to this global system. The

transformation requires the use of a simple [6 x 6] rotation matrix [ T ] that is of tile

form

o 10 [R(_+ Z:_)]
where R(o) is tile [3 x 3] rotation matrix [12]. This takes into account that the ends

of the curved element are oriented differently to each other. In the plane case, if tile

nodal coordinates are (xl, yl) and (x2, y2), then with 2p = v/(x2 - .T1)2 + (y2 - yl) _

and q = v/R 2 -p2, the angles are given by

oz=tan-1 {(X2--xl)p-- (Y2--Yl)q_
\02 _,)q+(y_-_/'

Since only two elements are present, we will assign the coordinate system of one to

be the global coordinate system and rotate the other.

The matrix [ T ] transforms the vectors of nodal displacements and nodal forces

to the global system as follows

{Y}= [r ]{_}, {_} = [ r 1{,,_}

where the barred <luantities represent tile local coordinate system. As a consequence,

the element stiffness matrix in global coordinates can be written as

[_: ]=[ r]_[ _ ][T]

The global stiffness matrix is then simply formed by adding the two global element

stiffness matrices together.

With the elements connected, wc can now determine the responses of the closed

ring due to a point excitation. The velocity reconstructions for three points, 0 =

0 °, 90 °, 180 °, along the ring are shown in Figure 1.10. For comparison purposes, the

same ring was modeled using 64 straight Timoshenko spectral elements. The two sets

of results are indistinguishable.

Unlike the previous example of an infinite curved beam, there are multiple re-

flections occurring. The waves are traveling around the ring and interacting with
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each other. From Figure 1.11, we can see that many resonance frequencies are being

established. These would be the frequencies of interest if a vibration experiment were

being performed. It is interesting to note that tile v response at 90 ° is missing inany

of tile internmdiate resonances, but these are present in the u response. Furthermore,

we see the effect of the first mode cut-off frequency ill tile v responses t)ut not in u.

This is consistent with Figure 1.6 for the infinite I)eam.

As a final illustration of tile results, we integrate the velocity responses for tile

ring to determine how it is deforming over time. Figure 1.12 illustrates the exag-

gerated deformation (multiplication by 300) of the ring due, to the t)oint excitation.

It is interesting to note the rigid body motion that is occurring although it was not

specifi(:ally addressed in the solution. On the time scale shown, tile i)rol)lem redu(:es

simply to a transfer of nlomentum. The force transfi_rs an impulse of at)out 0.31 N,_

to the ring of mass 2.80 kg, thus the force shoul(l cause the ring to move at. about

113mm/s. From the figure, we (:an at)t)roximate the ring velocity as 103 n tm/,_, the

difference being due to the damping present in the modeling.

Tile flexibility of the spectral element apt)roach has allowed us to view tile prob-

lem of the impact of a ring as one of wave propagation, or vibration, or rigid I)ody

dynamics. This comes about because of the convenience in alternating between the

time and fl'equency domains.

1.7 Discussion

A deep curved beam eleinent was developed that extends the variety of problems the

spectral element method can handle. One of the challenges that arose during the

develoi)ment was tile t)rot)lem of determining the spectrum relations. Even though

cubic solvers are well known, it is not always certain which branch should be chosen

after a branch point occurs. In the quadratic case, which occurs for straight beams,

the aml)iguity is removed by adding damping. This t)ecomes essential in the cubic

case so that the phase of each k,_(_) can t)e tracked correctly. The effect of the

damt)ing is to separate each of tile modes. With this separation, we can also reliably

identify the associated amplitude ratios.

The elelnent developed t)ossesses all of the features of the spectral element method

which make the method desirable for solving dynamic problems. Primary among these

are that the element can be very long and that the frequency domain formulation

alh)ws the system response flmctions to t)e determined automatically. This latter

attribute, along with the fast Fourier transform, enables a duality between the time
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domainand frequencydomain to be presentedconveniently.Information not.readily

seenill oneis often detectablein the other. The exampleproblemsdemonstratethese
features.

Appendix A" Computing the Spectrum Relations

The formulas used to solve the characteristic equation are based oil References[14,

15]. By replacing k 2 with z, the characteristic equation can be re-written as

z3+a2z 2 +alz+ao = 0

where tile coefficients are insured of being complex by adding damping to the system.

Now compute the terms

q = (a,_ - 3al)/9, r = (2a_- 9a2al + 27ao)/54

and

sl = -[r + V/_- qa] 1_

The three roots are then given by

, 82 _--
-q

Z 1 _-_

Z2 --

Z,3 --

(81+82) __ 15a2

1(_1 .+ 82) __ 1 i½(S l vf3 a2+ -s2)2

1(81 +82) -- I ,'1-2

Tile six spectrum relations are given as +vGz.

A difficulty arises in choosing the appropriate square or cube root since we wish

to compute single zj at a time. The issue is that while tile n th root of a complex

number z is given by

z = a + ib = Ae i* , z 1/n = A _/nei*/"

the phase 4) = tan -l(b/a) has an ambiguity of NTr. We remove this ambiguity by

keeping track of the total phase. That is, starting with some value and with reference

to the unit circle in the complex plane, as the wavenumber goes from the 4 th to the

1_t quadrant the total phase is increased by 27r. Conversely, if the wavenumber goes

from the 1_t to the 4 th quadrant the total phase is decreased by 27r. The ?9,th root is

then given by

z 1/,_ = A 1/nei(¢+Nr)/n

This scheme works quite robustly when the frequency increment is not too large.
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Figure 1.12: Deformed shapes (displacements scaled by 300) of a ring due to a point

excitation. Time intervals are every 750 ps.
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Chapter 2

Long Segmented Cylindrical Shells

The spectral element inethod for wave propagation in folded plate structures is ex-

tended to problenls involving curved members. By (_ombining these CUl'W_d spectral

elenlents with previously presented fiat spectral elelnents, the dynamic response of

geometrically complex structures can be determined. Of particular interest here is

the couplillg that occurs naturally between the in-plane and transverse degrees of

freedoln and how it affects the element formulation. As all exaull)le of the utility of

this element, the point excitation of an infilfite curved shell and a closed cylinder is

demonstrated.

2.1 Introduction

There is considerable intrinsic interest in waves in curved plate members because of

their use in such structures as arches, containment vessels, aircraft fiiselages, and ship

hulls. Some idea of the range of applications is described by Gould [16] and thorough

treatments of their formulation are given by Leissa [17] and Markus [18].

A frequency domain matrix methodology for analyzing wave t)rot)agation in com-

plex folded plate structures was developed in References [19, 20, 21, 22]. This chapter

is a continuation of those researches t)ut now extended to iilclude curved seginented

shells. At present, we consider only circular uniform cylinders l/ut tile segments can

be of arbitrary length in the hoop direction. (In this way it is different from the fiIfite

strip method described by Hinton et al [23].) Two spectral elements are (terix_d: a

single noded semi-infinite throw-off element, and a finite length two-noded element.

Both of these elements exactly model the distribution of mass and thus call be of any

length.

A flat plate element has eight degrees of freedom [22] and the assembled [8 × 8]

stiffness is achieved as a combination of two [4 x 4] elements plus a rotation matrix.
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But the curved elementhasall eight degreesof freedomcoupledand hencewemust

tackle the stiffnessmatrix directly as an [8 x 8] system. This is too cumbersometo

do explicitly; consequently,we lay out a computer basedmethod for establishingthe

shapeflmctions and subsequently,tile stiffness matrix. This adds to the comtmta-

tional burden,but as compensationweget all approachthat is conceptuallysimpler

and helpsto unify the specialresultsestablishedin tile earlier references.

An interesting aspectof shells is the coupling that occursbetweenthe in-plane

and flexural degreesof freedom. Unlike folded plate modeling where the coupling

between the degreesof freedomoccursonly at attachment nodes,the curved shell

segmentpossessescoupling at the level of tile differential equationsof motion. This

results in a spectrum relation that is relatively complicated. Therefore a portion of

this chaI)ter is devoted to discussingthe spectrum relation in somedetail.

While curvedshell segmentscanbecombinedwith flat elementsto form geonmt-

rically complexstructures, we will not emphasizethat aspectof their use. Rather,
wewish to focusst)ecificallyon someof the wave propagationaspects. \_ look at

two variations of a closedcylinder problem. The first is usedto verify the accuracy

of the formulation while the secondexploresthe nature of the waw_reflectionsin the

hool)direction.

2.2 Spectral Analysis of a Cylindrical Shells

There are a variety of statements of tile governing equations for shells; to be consistent

with Reference [22], we briefly summarize the derivation. To this end, we find it most

expedient to first speci_ the (leformation, obtain the strain and kinetic energies, and

then use Hamilton's principle to derive the equations of motion and the appropriate

boundary conditions.

Consider the segment of cylindrical shell shown in Figure 2.1. The shell has a

radius R, thickness h, and is considered long in the y-direction. The 3-D deformation

is aI)t)roximated as

+

'_(s,y,z) ._ v(s,y)- z-- (2.1)
0y

where u(s, y) is the mean mid-plane circumferential displacement, v(s, y) is the length-

wise displacement, and w(s, y) is the radial displacement. This deformation leads to
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the non-zerostrains

w Ott ( O'eu, 10'u "____ - n + oG-_ _+-_o_.]
Or, 0 2'.,,

(yy -- Z
Oy Oy 2

_ +--:( ,,,
&, &_ O-

2e_y
0,_ Otj 2_ 1?Oy )

(2.2)

()tiler shell theories have slightly different expressions for these strains; the present

theory is closest to that of Reissner [24] and Naghdi [25]. Excellent surveys of the

different theories are given in References . The theory developed here is the shell

equivalent of the classical I)late theory and the Bernoulli-Euler I)eam theory.

An application of HainiltoiFs principle [12] leads to the three governing equations

of motion (for _F¢= con.s'taTd)

-. 0 _u 0 9u 0 2t, 10w

E[_,s'2 + l(1-u)_+½(l+u)_] ROs]

1 .02u .02 u _0 aw _03w ).+_-_D[o-_-s2 + _(1 u--+R( +' - )0y_ 1

0_1, 0_',, 0% .0w]Ell(1 + .)_ + _ + ½(1- .)0..'_ R 0.
1 0u u &, w.

0 2 II OU

= ph-o- _ + 71h 0-7

o2v Or',

= ph_ + _lh,_

-O'ilL _ 04'W O'iW] ] - 03'// O:LU] ]02W 011'
+D[_ + 20_ _ + Oy_ + _D[_ + Os 3 = -p_.--_ - ,1t,-_7

where u is Poisson's ratio, D = Eh3/12(1 - u2), and E' = Eh/(1 - ,,2).

added some viscous damping through the _/terms.

Let the virtual work of the applied loads be

V) --
0s

51" = -O,,5',_ - Qjv - O.,aw - Qv,&"',

(2.3)

We have

then Hamilton's principle also gives tile associated boundary conditions on the side

._ = constant as:

u or Qu = [o_, _,, o.,,] 1 [O'2w 1 0,, 02.,1

, [o,, oq
_(1 - u)E [0s + Or]

1 [02u .02'u] [0a'u, , 0aw ]_v [o_ + (1- ")oLVJ- v to_+'+ (2- ")--o._ov_

D [ &s.2 + u0-_-S + RO, s (2.4)

v or Qv =

W or Qw

,/_,= -- or Q_, =
' 0s
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We can form the resultants per unit length as

:,T_._- f _,,.,dz, :% =- f _,svdz, Ms_--f <.zdz, M_y--f <.,zd:

where the integrations are ow_r the cross-section. After substituting for the stresses

and strains in terms of our apt)roximations, we get that the natural boundary condi-

tions are equivalent to specifying

Q,,_ _ Okl.,. 2°kSY
Os Oy

__

(2.5)

The first of these resembles the resultant load expression used for curve beams [26]

while the third resembles the Kirchhoff shear stress relation [11].

Spectral analysis assumes solutions of the form

u M 27r m 27c n

_4 '_',y,t) = Z Z _('_,_,,,_)_-_'""_'_', _- n ..... _o,,- T (2.6)
n=l 77Z=0

where II _ and T are the space and time windows, respectively. The use of these

representation is documented in Reference [27]. In this chapter, we limit ourselves to

problems that are symmetric about y = 0 and use cos((my) with u and w, and use

sin((my) with v. When these are substituted into the governing differential equations,

we get a set. of or(tinary differential equations with constant coefficients. These have

solutions of the form

_(s, _, () = Vo__-_k_, -iks

where k = k(co, _) is the wavenumber, hi this representation, the amplitudes Uo, Vo,

Wo, and the wavenumber are as yet undetermined. On substitution, these lead to the

homogeneous system of equations

ro,,-ik + (1- u)(2]DIR 2 -")'
c_2 =0 (2.7)

L [[: + (k 2 + (2)D]ik/R -uE_IR

IE_+ +  )DI k/Rl
_:l + E/R 2 J tWoJ

using

_ 1(1 _ u)_2] + phOv2(1_1 -- E[k 2 + _

_ _= -E[Q + ½(1- .)#_]+ p/_,

7 = i( 1 + u)kik_2

0_3 = D[k 2 + _212 _ phi2
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and &2 = _2 _ iaaTl/p. The al, (t2 and _/ terms alone define the fiat membrane

prot)lem, while (_a alone defines the fiat plate flexural problem. All tile other terms

are couplings. For a non-trivial solution, the determinant must be zero and this allows

k to be determined. This has eight solutions in all, but since only k 2 terms appear,

there are four basic modes appearing as +kj pairs.

For each wavenumber kj, Equati(m (2.7) gives the relation among the amplitudes.

This is homogeneous and therefore, at best, we can only get amplitude ratios. For

example, we can solve for the remaining two terms as a flmction of _*o. In anticitmtion

of a later need, we add g)o = -ikwo and write the solutions at a tmrticular wavenumber

kj as

{,,o}{1}_'_o (I)v

'.,o = *,o= {4 }

"_")o .j Opt,, J

where the symbol • indicates an amplitude ratio. Although the vector {_} shown is

normalized with respect to Uo, it is possible for other modal vectors to be normalized

differently. This must be done for each mode kj aim hence there are eight vectors.

\¥e choose to ret,resent these as [ _ 1= [[_A], [dpu]] where

and [(I)u] is the same but evaluated at the wavenumt,ers -kj. That is, the [4 x 4]

partitiot_s [(I)A] and [(I)u] are evaluated at +kj and -kj, respectively; they are fiflly

potmlated and typically are not symmetric. The normalizations are arranged so that

the uncoupled fiat plate solutions are easily recovered.

For each mode, the corresponding amplitude uoj is undetermined; to make the

notation resemble what we have already used, we will label each of the these A, B, • • -.

The solution for the displacements can then be expressed as

'/1(._) --= A(I)ll e-ik''s + B(PI2e -ik'_'_ + ... + 6(1)17 c+ikas + HdPlse +it'4s (2.8)

with sinfilar expressions for 'c,, w, and '&, but involving the amplitude ratios (I)2j, (I)aj,

and (I)aj, respectively. The coefficients A, B,..., H are to be deternfined fl'om the

t)oundary conditions.

It is apparent that the spectrum relation k(cv, () plays a central role in the solution,

and since the chara(:teristic equation is rather comt)licated, we h)ok at its solution in

greater detail next.
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2.3 Discussion of the Spectrum Relations

The characteristic equation to determine tile wavenumber k(w, _) is formed by setting

the determinant of system (2.7) to zero. On expansion, we find tile characteristic

equation can be rearranged as

k s + A._k 6 + A2k 4 + Alk 2 + Ao = 0 (2.9)

The expressions for the coefficients A. are too complicated to be listed here. This

has eight solutions in all, but since only k 2 terms appear, there are four basic modes

appearing as -4-kj: two associated with the in-plane behavior and two associated with

the flexural behavior. In general, of course, the modes are coupled and it is not proper

to st)eak of a membrane mode o1" a flexural mode.

\_ must solve a quartic equation in order to get the full 1)ehavior of the spectrum

relations. While the formulas for doing this are relatively straight-forward, they cause

some dif[iculties which are worth discussing.

Following Reference [14], we first write the characteristic equation as the conjugate

factorization for z = k '_

This allows z to be determined from a sequence of quadratic equations. The coeffi-

cients appearing in the above are

'4 b= IV/ 'a= _, 3, _ 8c+A_-4A2, d= -A0

and c is chosen as a solution of the cubic equation

1 _ ,2
c3 - ½[A2]c 2 + _ [ALA3- 4,401,: + _[AoA3 + A_- 4AoA2] = 0

The formulas to solve the cubic equation are based on those of References . We first

write the equation as

ca + a2c "2+alc + ao = 0

and then compute the terms

q = (a,_ - 3al)/9, r = (2a 3 - 9a2_la + 27a0)/54,

The three roots for c are then given by

C 1 ----

C2 --

C3 --

+ -

l (s1+ _ i .l
2

.l
2
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The eight st)ectrmn relationsaregivenas +_.

These equations can be easily programmed. The difficulty that arises is in choosing

the appropriate square or cube root in both the cubic and quadratic solvers, as well

as the appropriate root from the cubic solver. It is seen that while there are only four

z roots, the formulas give a multiplicity of 144 roots. This is esl)ecially acute since

we wish to compute a single zj at a time. The issue is that in comlmting the n th root

of a complex number z = (l + ib = Ae io, the l)hase 0 = tan -l (b/a) has an ambiguity

of N_-.

We remove this anlbiguity by keeping track of the total phase. That is, starting

with some value and with reference to the unit circle in the comt)lex plane, as the

wavenumber goes from tile 4 _h to the 1'_t quadrant the total phase is increased by 27r.

Algorithmically, we COmlmte (:omt)lete modes separately at each n_. Starting at a large

value of fre(tuency, we work toward the h)wer frequencies, keeping track of the phases.

The root c is chosen as the one that had the largest real value initially. Apt)roximate

spectruln relations are usefifl here in i(lentifying the apt)ropriate nn)des. This scheme

works quite r<)bustly when the frequency decrement is not too large. Periodic checks

with all iterative root finder helps confirln tile correctness of the roots. It must be

said that. determining the spectrum relations is now a signifi(:ant oI)eration in itself,

and unlike the previous reported cases, they are no-longer comI)uted on-the-fly as

part of the structural analysis.

An idea of the variety of behaviors is shown in Figure 2.2 for a value of ( = 2rrm/ll"

with m = 40. Ill this and tile remaining examples, we consider an aluminum shell

that is 25.4 mm (1.0 in) thick with a radius of curvature, R = 254 mn_ (10.0 i7_). Also,

we take W = 20 m (800 in). Using these values, the curvature has a significant effect

on the spectrum relations. The figure shows for the first, four spectrum relations;

these correspond to propagating waves, and are characterized by a negative imaginary

component.

Not surprising, there are many branch points in the spectrum relations. We clearly

see three cut-off frequencies but what is interesting is that two of them are associated

with k2, tile in-plane shear dominated mode. Note that both k2 and k_ have a

negative real component at. low frequencies and it might therefore be thought that

this violates the radiation condition tbr waves propagation in the positive direction.

In our approach, the wavenumbers always have an imaginary component even

predominantly real-only modes such as ka have all imaginary component arising from

the damping. Thus the identification criterion is based on dissipatioi_ of energy ill

the positive direction. A negative real component is ext)ected t<) lead to a standing
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wave.

It is difficult to get a clear idea of the complete (i.e., as m varies) spectrum relations

from Figure 2.2, it is useful, therefore, to introduce an approximation that will help

to delineate the separate contributions. An approximation that is reasonable tbr thin

shells of large radius is given by

11 _2 k._- 2R 2 4_ 4 R 2
(2.10)

i 9 (23 +
k,_ = k_. - _2 k 2 - 2R 2 - 4_ 4 R 2

where /,:2 - w2p(1_ u2)/E, k2s - w2p2(1 + u)/E, and k}, = w'2ph/D. The first

two are the membrane dominated modes and recover the plots shown in Rizzi and

Doyle (1992) when R is very large. The third and fourth modes are the flexural

dominated modes and fox large R they recover the flat plate spectrum relations given

by Doyle (1997). In comparison to the uncoupled modes, the major effect of the

curvature is in the longitudinally dominated modes because the cut-off frequencies

are affected and hence delay the formation of real-only wavenumbers.

Since the spe(:trum relations are relatively insensitive to R at large frequency,

Then these approximations are quite useful in identifying the modes as determined

by the root solver.

2.4 Spectral Element Formulation

When the number of degrees of freedom is large, we need an orgaIfized way" to handle

establishing the shape functions and the element stiffness. The cylindrically curved

shell segment is such a case and we take this opportunity to develop an appropriate

matrix scheme.

Consider a segment of shell of length L in the hoot) direction. We begin by

expressing the displacements as

_'t(8) = A_ll e-ik's + B(_12e -ik:* + "" q- G_lze -ika(L-s) + H_lse -ik4(L-s) (2.11)

with similar expressions for _, @, and '_':].The length is introduced to include reflections

coming from a boundary located at s = L. This displacement solution can be re-

written as

=

= {(p}lAe-ik, +...+ {_p}8He -ik4(L-s)
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We will re-write this in an even more compact matrix form; so as to make the matrix

notation more accessible, we will take the developments of the rod as the archetype

and use its notation (except changed to matrices). The 1-D solution for a rod [11] is

represented as

_(:r) = [e-ikl:]A + [e-i*"(L-:)]B

where A and B are associated with the forward moving and l>ackward moving waves,

respectively. The <tispla<:ement for the shell segment is written as

{/A}(s) = [+a]Fe(s)J {A} + [+_]Fe(L - s)j{B}

were [qL_] or [+H] are the [4 × 4] partitions of[ (I>] and

[_(_.)J=

c -ik_" (} 0 0

0 c -ik2s 0 0

0 0 e -ik*'_ 0

0 0 0 c -ik_'_
{A}{E}B {B}= F' {A}-= C ' G

D H

We wish to replace the vectors {A} and {B} in terms of the nodal displacements at,

s = 0 and s = L. That is, we introduce

with similar, 1)ut subscripted '2', terms at s = L. We write this in matrix notati(m as

{'/_1,'U1,'li)l,_'1}T= {_}1 = {Z-_}('S'_-0)= [_A][e(0)J{A} -[q)B][e(L)J{B}

{'fi2,'b'2,'&l,'_2}T = {fi}2= {H}(,v= L) = [q_A][e(L)J{A} -[dPB][e(0)J{B}

Solving for the coefficients gives

'U}I [Gll] {l, tl

where each partition of [ G ] is of size [4 x 4]. We are now in a position to write the

displacements in terms of the shape functions. They are

{/_}(S) = [g(,S)]l{'_}l n t- [.q(,b')]2{'_}2 (2.12)

where the [4 x 4] matrix of shape flmctions are defined as

[g(.s')]l = [(I)A]re(s)J[Glt]+ [qbB][e(L- ,s')J[G2,]

[_](S)]2 = [(I)A][(,(s)J[GI2] ___[(I)B][(?(L I s)J[G22] (2.13)
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There are a total of 4 x 4 x 2 = 32 shape functions. While not obvious from the

above, it turns out that, even in this general case, the collection of shape functions

associated with the degrees of freedom at the second node are the mirror image of

those associated with the degrees of freedom at the first node. The results for the

throw-off element are simply are simply those associated with [Gll]. These fornmlas

can be used to recover all the shape functions already derived in the cited references.

By way of example, Figure 2.3 shows the g33(s) cos(_mg) shape function of a 270 °

shell segment; this shape function is associated with the _,_ degree of freedom and

thus can be plotted as a radial displacement off the original shape. These shape

functions are similar in concept to conventional finite element shape functions except

that they are frequency and wavenumber dependent, are typically complex, and can

represent the behavior of very large segments. The other shape functions behave

in a similar inanner. It is clear from this figure and from the above developments,

that once the nodal degrees of freedom are deternfined then the shape functions can

be used to compute the responses at any intermediate locations. This is a crucial

attribute since the segments can be very large.

The next step in the element development is to derive a stiffness relation for

the shell segment. The process is simply that of expressing the resultant forces and

moInents from Equation (2.5) in terms of the displacement solutions given in Equa-

tion (2.12). We write these resultants in matrix form as

where [ 0 ] is the matrix collection of differential operators of size [4 x 4].

substituting for {U}(s) in terms of the shape functions get

After

{yI(s) = [o +[ o

-- + (2.14)

Relating the member resultants at s = 0 and s = L to the nodal loads at the same

locations leads to the stiffness relation

i0  0 l, (2.15)
{t0}2 [+Og(L)]l [+Og(L)]2

or simply {/_} = [k(a_,,{)]{g} where

{/_) = {:_1, /_Yl' _1, _11; ]_'2, /_Y2' _':_' ]_f2} r' {?_} _--- {?_1, ?_1, ?L'I, _1; 'U2, _)2, W2, '_2} T
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and [ ]_:] is the [8 x 8] dynamic element stiffness matrix. This stiffness matrix is fre-

quency and wavenumber dependent, complex, and symmetric. The stiffness relation

for the throw-off or one-noded element is simply

= { }, = }, (2.16)

Tile stiffness matrix in this case is of size [4 x 4]. These stiff'hess relations can be used

to recover the results already presented in the cited references.

For illustrative purposes, Figure 2.4 shows the nortnalized _:ll, ['22, ['3a, and ['44

diagonal terms for the same shell used to illustrate the shape flmctions. As is typical

with spectral elements, they exhibit a very large dynamic range. The normalizations

are with respec.t to tile stiffnesses for straight thin beams [12] but modified for plates.

That is, they are presented as

kl_/(Eh/L) , k22/(Gh/L) , kaa/(12D/L3) , _'44/(4D/L)

Note that tile _'11 stiffness is substantially less than tile static values, and it is only

after the cut-off frequency (_ 3 kHz for m = 0) does it become greater than unity.

On the other hand, kaa is always significantly larger than the static straight value;

this is because the L a in tile denominator predicts all inordinately small static value.

2.5 Point Excitation of a Shell

Tile advantage of the curved element, is that. it. call be combined with other elenmnts

either flat. or curved to form significantly more complex structures. References [28,

21] discuss aspects of the computer programmillg structure required for multiply

connected spectral elements; they also show how tile spectral elelnent method call be

hosted on a massively parallel machine. Tile variety of possibilities is too great to

pursue here, so we will be content with two short examples. Both involve tile point

excitation of a complete cylindrical shell but the latter shifts tile boundaries so as to

explore the nature of the reflections.

We form the complete cylinder by combining two curved elements of tile same

material properties each of which is a half-circle. Because of symmetry, we couhl

model the shell with a single half circle element or as a single whole-circle element.

Ill the latter case, half of the applied load must be placed at each node and the extra

conditions of 'uL = 0, '_t = 0; u.2 = 0, 't['2 = 0 be imposed. Tile two element model

was chosen so as to verify the assemblage process.
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The elementscall be joined at the common nodesby merely summing together

the appropriatedynamicstiffnessmatrix componentsto form a global stiffnessmatrix

[/_" ]. V,_ must therefore first rotate each element stiffness to this global system. This

must take into account that the ends of tile curved element are oriented differently

to each other and an appropriate scheme is illustrated in Reference [26]. The global

stiffness matrix is then simply formed by adding the two global element stiffness

matrices together.

With the elements connected, we can now determine the responses due to a point

excitation. The input force history used is the same as used by in Reference [22]: it is

a pulse of duration of about 120/t.s', and has a frequency content of about 16 kHz. The

velocity reconstructions for three points, 0 = 0°, 90 °, 180 °, along tile circumference

are shown ill Figure 2.5. For comparison purposes, the same shell was modeled using

64 fiat spectral elements. The two sets of results are indistinguishable even though

there are very many reflections. It is worth pointing out that when fewer flat elements

were used the results deteriorated as the time increased. This shows tile significant

computational savings ill using the curved element.

There are obvious multiple reflections occurring. The waves travel around the

circmnferenee and interact with each other. We can get an alternative insight by

looking at the system response function G where "h = G/5 and /5 is the input load.

Note that this facility is an integral attribute of the spectral element formulation.

From Figure 2.6, we (:an see that many resonance frequencies are being established.

These would be the frequencies of interest if an impulse/modal analysis experiment

vibration experiment were being performed. It is interesting to note that the w

response at 0 ° and 180 ° exhibit similar resonant behavior, but the response at 90 ° is

missing many of the intermediate resonances. A significant peak appears at about

3.3 kHz; we now look further at this.

\_ wistl to explore the effect of tile reflections on the formation of tile spectral

peaks. To do this, we will model the cylinder as a sequence of increasing elements but

of the same radius tile cylinders (:all be viewed as forming helical coils. The net

effect is to place Node 2 further and further away from Node 1. The final model is

a single throw-off element. We use tile same broad band excitation and the velocity

reconstructions are shown in Figure 2.7. There are two points of interest. First,

note how all traces have the same initial behavior this is the duration before any

reflections return. The 180 ° element shows the most reflections and these diminish

with increasing element size. The second point of note the trailing oscillatory behavior

even for the infinite element. Although tile force excitation lasts less than 200 #s, tim
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plate continuesto oscillate in an ahnost resonant like fashion. Actually, a standing

wave has been established.

A different view of these behaviors is obtained by looking at the velocity responses

in the frequency domain. It is (:lear in Figure 2.8 that there is the formation of

an increasing number of spectral peaks as the eletnent length is increased. This is

expected but what is interesting is a peak in the w-velocity response in the infinite

length case. An analysis of the amplitude ratios shows that this peak is coming

entirely froin the first mode even though tile resI)onse overall is doIninated by tile

first mode. What is hapI)ening is that the curvature acts effectively as a continuous

boundary and sets up a standing wave.

The flexibility of the spectral element approach has alh)we(t us to view the prol)len,

of the impact of a cylinder as one of wave propagation or vii)ration. This comes at)out

1)ecause of the convenience in alternating between the time and frequency domains.

2.6 Discussion

A spectral shell element was deveh)t)ed that extends the variety of t)rol)leins the

spectral element method can handle. It was shown to t)e accurate an(t certainly

more computationally efficient than using multil)le fiat plat(' elements. The elenwnt

deveh)t)ed possesses all of the features of the si)eetral element method which make the

method desirat)le for solving dynamic prol)lems. Primary among these arc that the

element (;all |)e very long an(t that the frequency (lomain forumlation allows the system

response functions to be determined autonlatically. This latter attribute, along with

the fast Fourier transform, enables a duality between the time domain and frequency

domain to be t)resented conveniently. Information not readily seen in one is often

det(_ctable in the other. The example problems demonstrate these features.

One of the challenges that arose during the develot)ment was the t)rol)lenl of

determining tile st)ectrum relations. Even though fornmlas for the solution of quart|('

equations were derive(t, it is not always certain which branch should t)e chosen after a

branch point occurs. In the quadratic case, which occurs for fiat plates, t h(' amt)iguity

is removed by adding damping. This becomes essential in the general case so that

the phase of each kj(a:, _) can be tracked correctl3 .... the effect of the damping is to

separate each of the modes. The damping is also necessary ill order to distinguish

between the forward and backward moving waves.

Based on the problems we have considered, it is clear that once there is more than

one connection in a structure, it is essential t() have a matrix methodology to lmndle
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tile many unknowns.The spectralelementapproachpresentsitself asa well founded

matrix method that embodiesa numberof efficiencieswe have long associatedwith

tile conventional finite elementmethod. For the range of problems they are suited

for, they show greatefficienciesand conveniences.Being formulated in the frequency

domain means it is also ideally suited for energy flow analysis of the type described by

Langley [29]. It is also appropriately formulated for tackling the solid/fluid interaction

problems as occur in structural acoustics. A beginning in this direction is described

in Reference [26].

The approach as presented so far has difficulty with localized discontinuities of

properties or geometry unless the have a very simple geometry. At present, there

is also the restriction that lateral boundaries must be relatively far away. Similarly,

there is a restriction that the material properties and geometry in the lateral direction

be uniform. It is hoped to tackle these issues in the fllture.
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Figure 2.1: Coordinate system and displacements fbr a segment of cylindrical shell.
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Figure 2.2: Spectrmn relations kjh for a shell segment with R = 254mm and h =

25.4 ram,, and m = 40.
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Figure 2.3: Samples of shape flmctions for a 270 ° shell segment.
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Figure 2.4: Normalized stiffnesses kll, /_22, /_33_ and k44 for a 270 ° shell segment.
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Figure 2.5: Velocity reconstructions for tile point excitation of a closed cylinder.
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Figure 2.6: System response flmctions for the point excitation of a closed cylinder.
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Figure 2.7: Velocity reconstructions at, !/ = 217 for tlle point excitat, ioi] of shells of
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Figure 2.8: Frequency domain response at y = 2R for the point excitation of shells

of different, circumference.
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Chapter 3

Acoustic Radiation from Plate

Structures

Spectral elements, which incorporate the effect of fluid loading on the structure, are

developed for analyzing acoustic radiation from dynamically loaded extended plates.

These elements mav be conveniently joined to form complex thin-walled structures

coinposed of many segments.

3.1 Introduction

There are many practical situations where the interaction between the dynamics of a

structure and a surrounding fluid is of great imt)ortance. The most ol)vious is noise;

noise is the propagation of acoustic energy through the fluid. The interaction can also

influence the resI)onse of the structure itself; examples include dams, chinmey stacks,

ships, fuselages, propellers, and transmission cables. Fhfid loading problems are very

hard to solve exactly, and for geometries and configurations of practical interest it

is essential to be able to make useflfi simt)lifying at)proximations [30]. The l)urpose

of this chapter is to introduce a method being developed for analyzing folded plate

structures immersed in a fluid.

A schematic of the cross-section of the folded plate structures of interest is shown

in Figure 3.1a; the plates extend in the y-direction. Such a structure when immersed

in a fluid can experience three tyt)es of loading. The first is the structure-borne

excitation caused by the propagating structural waves. The second is a pressure

loading arising from some source within the fluid; this acts as a distributed external

loading on the structure. The third load is the 'setf-h)ading' or fluid loading caused

bv the moving structure interacting with the fluid. This also acts as a distributed

t)ressure loading but, since the magnitude depends on the motion of the structure, it
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hastile effectof couplingthe structure andfluid motions. Additionally, theseenclosed

structures areviewedashaving twodistinct regions;an interior regionand anexterior

region. The interior regionhasloadingsdue to both the fluid and the radiation from

the vibration of other plates, whereas,the exterior regiononly experiencesloadings

from the fluid. Ill this chapter, we restrict tile fluid to beonly on the exterior of the

structure so that wecan concentrateon the structural dynamics,fluid loading, and

radiation into the fluid. The reverberationproblem for enclosedspacesis not treated
here.

Our analysisof the structural dynamicsis basedon the spectra]elementmethod

(References[6, 8, 11]give summariesof the approachasappliedto frame structures)

but appliedto structuresof extendedareas.This application to thin-walled structures

begins by combining the spectral analysisfor in-plane waveresI>onses[19] and out-
of-plane flexural behavior [27] to form a matrix method approachfor folded plate

structures [22]. The variety of structural shapesencompassedwas recently enhanced

by adding a segmentedcurved shell elementasdetailed in Chapter 2.

The solid/fluid interaction problem is very intricate [31, 32, 33]; many of the finer

points are covere<] in the excellent summary paper by Crighton [341. The essential

difficulty is that the two media are coupled ill a convohltion sense this is unlike a

plate on an elastic foundation, say. _ tackle the interaction problem by incorporat-

ing the effect of fluid loading on the structure directly into the element formulation.

In this way, the structural formulation for in vacuum dynamic response is unaffected.

Our approach is approximate but is shown to be reasonably accurate for medium

fluid loading. Radiation from these extended plates is handled very conveniently

by utilizing the shape functions associated with the spectral elements. In fact, this

computation of the pressure response in the fluid is performed as a post-processing

operation. The challenge we have here is to match the motion of the finite plate

to that of the fluid. But the domain for the fluid is (at least) the half space above

the plate and is considerably larger than the length of the plate itself. Therefore, to

match the plate and fluid boundaries, we must extend the plate boundary. We do

this by assuming the displacements can be matched by imposing w = 0 outside of

the finite plate. We further assume that this can always be done even if the plate is

not physically baffled but is attached to other plate segments. The idea is illustrated

in Figure 3.1b.

Our interest in this chapter is on aspects of the structure/fluid interaction, there-

fore for simplicity, we take the plates and loading as being uniform in the ;q-direction.

We also have in mind aeronautical structures as typified by aluminum in air this
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correspondsto a relatively light fluid loading situation ascomparedto navalapplica-
tions.

3.2 Plate/Fluid Interaction: Infinite Plate

As a prelude to considering finite plates, we first look at the response of an infinite

plate with fluid loading on one side. This will allow us to establish the context of the

approximations to be made in the next se(:tion. The plate lies in the :r- g t)lane, but

for simplicity we take the plates and loading as being uniform in the !,,-direction.

The goveruing equations for the deflection w(x, t) of a thin plate and the resulting

pressure p(:r, t.), when a mechanical loading q(x, t) is applied, are

02p (3.1)
D_04w + 71h_Ow + phi5_ 202w= q(x, t) - p(x, z = O. t) , BV2p = p,, Ot 2

where h is the plate thickness, D the plate stiffimss, p the plate nmss density, B the

fluid bulk modulus, and p_, the fluid mass density. We have also added some damping

to the structure through 7/. The interface conditions between the plate and fluid are

Op(x, z = 0) 02'_v(:r,z = 0)
_.',_a_(Z) = .'Z_.(Z, Z = 0), 0_ = --po 0t._ (3.2)

Our solution technique uses spectral analysis; this assumes solutions of the fl)rm

N N II 2 7?

w(:r,t) = _-_'d,(x,w,,)e i_'''' , p(x,z,t) = _-_[)(.'c.,z,w,,)e i_'''' , w,,- T (3.3)
"/1 n

where T is the time window for the discrete transform. Typically, N ranges as

512 _ 4096. When these are substituted into the governing differential equations,

we get

D
dx 4

phcJ_,(._..)= q(x) - p(',,,"-= o), BV2/) + p°w21 ) = 0 (3.4)

where w2 = w 2 - iwrl/p and the interface relations become

0/)(x, z = 0) = w2po_b(:r ) (3.5)
'_:p_t.(z)= '_i_,_(:r, z = 0), Oz

This set of equations will be our primary equations governing the dynamic response

of the plate and fluid.

Consider a single infinite sheet, with fluid only on one side and with a line loading

along x = 0. Let. the plate deflection and loading be represented in the form

M AI m27r

'd,(x) = _ ,i-;,,,e -i¢''" , (t(x) = _ gl,,,e -i_''' , _'" = l'l" (3.6)
_[I ?7Z
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where W is the space window for the discrete transform. Typically, M ranges as

500 _ 2000. The pressure has a similar representation, except that we must realize

it is two-dimensional

M

/)(x, z)= y_13,_e-i¢'"Xe -ik:'_ , /,:z = V/k_- (_ (3.7)
_Tt

This corresponds to pressure waves radiating from the plate surface in the positive

z-direction. The pressure boundary condition at z = 0 is now

Substituting these into Equation (3.4) gives the displacement of tile plate and tile

pressure in the fluid as, resl)ectively,

'&(x) =
qrne i(,,,x

m [D{4 _ phw2 + iwqh

P("', = Z O c- e'"x (3.8)paw .)"

" [De4m - phw 2 + iw@ _ J p.w, 2

As with tile case of a plate in a vacuum, 0,,, is chosen to t)e 1.0 to represent a line

load at x=0.

Figure 3.2a shows the resulting pressures 100 mm from a 2.5 re'm. thick aluminum

plate subjected to a line loading. Tile history of the loading is a smoothed triangular

pulse of duration about 150 #s and having frequency content of about 16 kHz. The

pressures exhibit an oscillatory behavior where tile period of the zero crossings is

almost constant. Figure 3.2b looks at tile system response function lal where the

pressure is related to the applied resultant load as t) = 0/5. The most striking feature

of the pressure is the spectral peak in the vicinity of 5 kHz - this corresponds to

the coincidence frequency as discussed next. Note that tim peak gets sharper further

away from the excitation site, and that there is more filtering before the coincidence

frequency.

Tile coincidence frequency occurs when the phase speeds of the plate bending

wave and of the acoustic wave in the fluid are equal [31, 32] and is given by

2 % 12(1 - u2) Co =- Co = (3.9)
CJc = Ca -- C--jr ' '

The significance of the coincidence frequency is that wave components in the plate

above this frequency are radiated easily into the fluid as seen in Figure 3.2. The
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coincidenceplmnomenadependson tile extent of fluid loading, thus it is useful to

have a measureof this loading. Following Reference[34], fluid loading is charac-

terized by two independent parameters: a mass ratio a = pac,_/phcu and a speed

ratio M = c/ca = ka/k. \_ have M = 1 at coincidence. Both parameters are fre-

quency dependent; we can arrange for only one paraineter which is varied with 03 by

introducing
poc_

- m C°/V/12(1- - u")
e - ph03,, p c,

1

The parameter e, (:ailed the intrinsic fluid loading parameter, is the same for all plates

of a given material embedded in a given fluid. This is typically small with values such

as

steel/water: 0.130, aluminum/air: 0.002

In the examples that follow, we are t)rimarily interested in the almnimHn/air case.

3.3 Waveguide Modeling with Fluid Loading

Our goal here is t<) formulate the structural dynamics problem in terms of a waveguide.

If we can replace the wavenumber transform solution for the plate response given in

Equation (3.8) with a waveguide solution then that saves a suinmation operation.

But much more importantly, it allows us to terminate the waveguide and theret)y we

are in a t)osition to assemble complex structures. The difficulty is that while the effect

of the fluid loading is that of a distributed pressure, it's n(m-local character makes

it different from the pressure caused by a distributed spring, say, and hence we must

invoke special procedures.

To begin our construction of a plate waveguide, we ask if it is possible for free

waves to propagate in the plate iinmersed in a fluid. That is, we seek wave solutions

for the plate of the form 'd, = ,be ikx when the loading q is zero. This implies a

pressure response of

03 2

= pe-ikx( _-ik:z, k z E _a- _:2, ka2 __
C a

It must be borne in inind that as long as k: is chosen as above then irrespective of

the value of k the fluid equations are satisfied. When both ,b and f) are substituted

into the governing equation we obtain the characteristic equation

ik.D-O' :_2= V u (3.10)
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Tile third term in tile first equationdescribestheeffectof the fluid loading. A detailed

explanationof the significanceof eachterm is given by Crighton [34]and the roots of

this characteristic equation have been studied extensively in References [35, 36, 30].

Contour plots of the characteristic equation are shown in Figure 3.3. It is seen that

there are four dominant roots similar to a plane in a plate.

When the response of Equation (3.8) is viewed as a contour integral [37] in the

complex planes of Figure 3.3, it has contributions from the poles and a contribution

which arises from tile branch cut associated with k_. This latter contrilmtion is most

significant at impact points and corners [34]. By neglecting this contribution, we

would then be in a position to replace the responses with just the pole contributions.

That is, we will have a waveguide representation. To quantify this contritmtion, we

consider the response of a 25 mm thick steel plate in a fluid of density 138 g/m a and

modulus 0.37GPa subjected to the pulse line loading. This gives an intrinsic fluid

loading of e = 0.020 which is an order of magnitude larger than the cases of actual

interest. Figure 3.4 shows the responses with and without the branch cut contribution.

The agreement of the two solutions is very good with sotne deviations occurring at

tile h)ad site that are primarily in the low frequency range. This is confirmed at. the

large x locations. We therefore conclude that in the case of an aluminuln plate ill air

the branch cut contribution (:an be neglected.

Numerical solutions for the roots of the characteristic equation are shown in Fig-

ure 3.5 as circles along with the in vacuum roots indicated as tile dashed lines. These

plots, which are for 2.5 ram aluminum plates in air, show that the fluid loading pri-

marily has the effect of altering the imaginary part of the first mode. We see that at.

coincidence and beyond, the effect is of increased viscous damping - this is consistent

with the observation that the fluid is receiving more of tile energy at these frequen-

cies. But, otherwise tile behavior is very similar to the in vacuum behavior. That is,

the pole contributions are associated with root kl which corresponds predominantly

to the propagating flexural wave, and with root k 2 which corresponds predominantly

to an evanescent flexural wave.

Making the assumption that there are only two dominant structural waves allows

us to obtain approximate analytical expressions for the roots as

kl _ 4- /3'_ + 2Dikza/_ 2 '

i DaW' 2k,e _ 4-i _2 + 2Dike2� 32 , kz2 - _+/32 (3.11)
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These approximations are also plotted in Figure 3.5. There is very good agreement

with the exact numerical roots over the entire frequency range including the region

near coincidence.

By incorporating the fluid loading term directly into the modified sI)ectrunl rela-

tions, we are now in a position to replace the double summation wavemnnber trans-

form solution by a single summation over frequency. This is useful when an enclosed

structure is viewed as having two distinct regions; an interior region and an exterior

region. The interior region has loadings due to both the fluid and the radiation fi'om

tile vibration of other plates. However, tile exterior region only experiences loadings

from the fluid. Using the modified spectruln relations, tim fluid loading for the ex-

terior problem (:all |)e accounted for without considering the fluid response. In this

way, the solid/fluid interaction problem is partially decoupled.

We conclude this section by illustrating the difference the waveguide formulation

makes. The transverse displacelnent of one half of the infinite plate with two fi)rward

propagating waves is expressed as

'tb(X) = Ae -ik'x + Be -ik2"_"

where kl and k2 are the modified si)ectrum relations presented in Equation (3.11).

The boundary conditions for this problem are that at x = 0 the slope of the plate is

zero (Od'_/Ox = 0) and the applied load is related to the shear by

1/5 = (- = _D 0:r32

The response of the plate is then determined to be

_i)(z) = 2Dilq (_; - k_) e-ik_ - --Ck._

where most quantities are frequency dependent. This solution is to be compared to

Equation (3.8). The responses of Figure 3.4 were computed using this solution.

It is clear that the waveguide approximate modeling for plates in a surrounding

fluid is accurate and efficient.

3.4 Modeling of Finite Plates in a Fluid

We now illustrate how the waveguide modeling allows us to tackle the very difficult

t)roblem of tile response of finite plates in a fluid.
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We begin by writing the general transverse displacement for a typical plate seg-

ment of length L ill the form

_[_(x) = Ac -i<* + Be -ik:x + Cc -ik_(L-x) + De -ik2(L-x)

where A, B, C and D are constants to be determined from tile boundary conditions

on the segment. Also, by using the modified spectrum relations, we claim that this

adequately represents tile behavior of a plate immersed in a fluid. It is advantageous,

when dealing with finite or multiply connected structures, to use a solution formu-

lation that already incorporates the connectivities. Tile end conditions on the plate

segment are

d,b(O) - d&(L) _ _e
'&(O) = 'd,l , d:r - ¢t , _b(n) = _i,2, dx

Solving for the coefficients in terms of the nodal degrees of freedom allows the trans-

verse displacement of the plate to be re-written in the form of a collection of shape

functions

'U2(37) ---- .01 (3_):_121 + .02(37)L_/!_i -_- .03(37)_72 -_- 04 (37)L_'2 (3.13)

The frequency dependent shape functions .0j(x, a,,) are given as

.02(37)---- [i'1]-/3(:t,;) + r2]t4(*)]/,-_

.0._(37)= [_._/_(,)+ ,._/,,(z)]/_

.0,,(37)= -[_,h,(,) + _h_(_.)]/_
r2 = i(kl + k2)[1 - e-k'Lc-k"L]

(3.14)

where A = -(r_ + r22) and

]tt(x) = +ik2[e-ik_ - c-ik"Lc-ik'(L-_)]- ika[e-ik2*- e-ik'Le-ik'(L-*)]
J_,_(x)= -ik_[_-"_% -'_,_ - ___(I_-_)]+ ik,[_-<'._-_,_ - _-,_,(L-x)]
it3(/) _____ [c-ik,x+ c-ik2Lc-iki(L-x)]__ [_-ik2x_.__-iklLc-ik2(L-x)]
i',4(X) : [C-ik2L_-iklx ____-ikl(L-x)]_ [_-iklL_-ik2x-__-i$c2(L-x)]

As an example, the shape functions gl and _ are shown plotted in Figure 3.6 for

a number of frequencies. The shape functions occur in pairs where g3 and .04 are

the mirror images of gl and ,02, respectively. These shape functions are comparable

to those of the conventional finite element method except that they are frequency

dependent and can represent very large areas. References [11] illustrate how these are

used as the basis for the spectral element representation of the folded plate structures,

these references also show the assemt)tage procedures.
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What. we want to look at here is how a typical plate segmentradiates pressure

into the fluid. The challengewe havehere is to match the motion of the finite plate

to that of the fluid. But the domain tbr the fluid is (at least) the half spacez > 0 and

-oc < x < oc which is considerably larger than tile length of tile plat(,. Theref<)re,

to match the plate and flui(t boundaries, we must extend the plate boundary in the

x direction. If the finite plate is baffled, that is, extended on both sides with w'rv

stiff material, then the displacements can t)e nmtched by imI)osing w = 0 outside of

the finite plate. We will assume that this can always be done even if the plate is not

physically baffled but is attached to other plate seginents. The schematic is shown in

Figure 3.lb.

At. the surface of tile plate, z = 0, the fluid displacement must I)e equal to the

plate displacement. By extending the plate deflection over the full space wiudow of

the fluid, we can then give it the spectral representation

Applying this to the shape functions gives

_'_m = "ll_'l_lm "-_L'_,_I2,,, + 'ti_'2.0am-t- Lg;2.04,n, 9j,,, = [ (3.15)
l"

These integrals are easily evaluated since gj(x) contain only exponentials. The shape

functions .0j(.r) arc zero outside the length of the plate element; this is equivalent to

assuming each finite plate segment is baffled to infinity. The continuity of wj and _i,j

between seginents ensure continuity of the fluid field. The response of the fluid now

has the spectral represent.ation

tb(X, Z) = E 1_["nt'-ik:z e-i(":r '

U22

p(z, z) = Z -ikz

These, in combination with Equation (3.15), relate the fluid response at any point to

tile plate nodal degrees of fi'eedom. If there are many plate segments, then the total

response would be the sum of the contributions from each segment. We will ilhlstrate

these formulas with the example of a finite plate.

In piecing together tile solution for the finite plate of Figure 3.1c, we treat tile

plate as having two segments with tile boundary conditions

seginent 12:

segment 23:

wl = 0 t'::'l = 0; w2 = Wo, _.')_= 0

w, = wo, _'h = 0; w2 = 0 '_,"1,2= 0
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This leadsto tile solution for the fluid displacementwritten in terms of the central
deflectionof the plate as

_vi<l

Note that the representation for the first, plate segment must, be shifted an amount

L. The pressure is given by

PAW'2 glint7".,-i_,nx] e-ik:zp(x, = Z -ikz [ + ]

The shear relation at the load location is ½t5 = _i_ . = D_'o"'. This gives the central

deflection as
P

2Dgi'"(0)

With reference to Figure 3.1c, it is worth emphasizing that although '., is physically

continuous at Node 2, the above representations have a discontinuity. That is, seg-

nlent 12 is discontinuous to the right while Segment 23 is discontimmus to the left.

Hence this example is a good first test case of our scheme.

To test the validity of our approximations, a planar finite element model of a

baffled plate in a fluid was constructed for the problem shown in Figure 3.1c; only

a finite fluid domain was modeled. The plate is 25 mm thick steel and the fluid has

the properties such that e = 0.02. Figure 3.7 shows a comparison of velocities of the

plate and the fluid. The agreement is quite good up to the time when reflections come

from the far boundaries of the fluid - the spectral solution has no such boundaries.

The agreement is especially good for our purpose when it is realized that the fluid

loading corresponds to a loading factor nearly ten times that of our cases of interest

of aluminum plates in air.

These equations were also applied to the case of a finite 2.5 mm thick aluminum

plate in air. The responses for the plate are shown in Figure 3.8; the presence of

multiple reflections are obvious. Figure 3.9 shows the corresponding frequency domain

behavior where the reflections give rise to multiple spectral peaks. Also shown are

the resonance frequencies for a vibrating plate in vacuum, it is clear that the impact

has excited many of the symmetric modes of vibration. The pressure responses for

the fluid can also be seen in Figure 3.8. Similar to the plate response, these indicate

the presence of multiple reflections occurring in the plate. This figure also indicates

that the baffled finite plate not only excites the fluid directly in front of it but also at

a distance along the baffle. The pressure at x = 2L, z = 0 is non-zero even though

the plate is baffled at that location this is further indication that, in fluids, the
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relation betweenthe pressureand displacementis non-local. The frequencydomain

depiction of theseresponsesis shownin Figure3.9. It canbeseenthat the frequencies

at which the structural resonanceswerepresentin Figure 3.9 are readily transmitted
into the fluid.

Intuitively, we might have thought that the responseshould be largest along a

line normal to the plate. The responsesshownin Figure 3.8 indicate that this is not

so. Furthermore, Figure 3.9 showsthat it is evenfrequencydependent. Figure 3.10

showstile directivity patterns at a nmnberof frequencies;the near field behavior was

conq)ut.edfrom the flfll solution with r = 2L. It is clear that these patterns are very

sensitive to direction when the frequency gets close to coincidence. Also shown arc

the deflected shapes of the plate at each frequency. These shapes indicate an ahnost

sinusoidal plate deflection except at the center and edges these are the points of

significant radiation.

3.5 Discussion

The methods discussed in this chapter is a first step in extending the spectral element

method to include structure/flui(l interaction problems. The key step is that t)y

incorporating the fluid loading into the sl)ectrum relations allows us to maintain

the element formulation. This is important because the spectral element approach

presents itself as a well foun(led matrix method that embodies a number of efliciencies

we have long associated with the conventional finite element method. For the range of

problems they are suited for, the spectral elements have been shown to conveniently

too(tel wave t)ropagation in structures made of multiple t)anels. Furthermore, the

spectral element is eminently suited for hosting on massively parallel coml)uters [28,

21].

There are many more (tevelopments needed. The most important of them are:

veri_ _ tile radiation approxinmtion from re-entrant edges, implement radiation from

curved surfaces, and, implement the book-keeI)ing necessary for solving revert)eration

in a enclosed space.
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Figure 3.1: Geometries of the plate structures with fluid loading. (a) Schematic of

cross-section of folded plate structures of interest. (b) Treatment of plate connections

as baffled extensions. (c) Modeling of" a finite baffled plate as two plate segments.
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Figure 3.2: Time and frequency domain rest)onses for the line loading of an infinite

plate. (a) Fluid pressures p(x, z = L, t). (b) Syst.em response function [G(.r, z = L)[

for pressure.
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solution that neglocts tlw branch cut contribution.
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500 ram. (a) Plate responses d,(x, t), (b) fluid pressures p(x, z = L, t).

69



__t . , o resonance, sym

A_ _a) • resonance, anti_sym

x=O.50L

_o,o,o,o,o,o • o • o • o • o

I .... I .... , .... I .... m.... , .... Freq "--'[I<HZ]

O. 2. 4. 6. 8. 10. 12.

(b)

k ,i____. - x=2L z_L

__'_ _,.Y_., x=2L z:O

• _IIOQ0000 0 8 0 Q 0 • 0 • 0 • 0 • 0

I .... I .... I .... I .... I .... I_m i hi, ,+_1

O. 2. 4. 6. 8. 10. 12. 14.

Figure 3.9: Frequency domain responses for an impacted plate of length 2L =

500ram. (a) Plate responses lia_'_b(z)l, (b) fluid pressure Jib(x, z = L) I.

7O



near-field/_

10kHz

'; :' " "_ :' _ ;' 5kHz

@ lkHz

: , 500Hz
--',.,/ .;

100Hz

Figure 3.10: Directivity patterns for impacted finite plate. Also shown are the plate

shat)es at, each frequency.

71



Bibliography

[1] Philipson, L.L., On the Role of Extension in the Flexural Vibrations of Rings, Journal

of Applied Mechanics, 23, pp. 364 366, 1956.

[2] Morely, S.D., Elastic Waves in a Naturally Curved Rod. Quarterly Journal of Me-

chanical and Applied Mathematics, 14, pp. 155 172, 1961.

[3] Wittriek, W.H., On Elastic Wave Propagation in Helical Springs, International dour-

nal of Mechanical Science, 8, pp. 25-47, 1966.

[4] Britton, W.G.B. and Langley, G.O., Stress Pulse Dispersion in Curved Mechanical

Waveguides, Journal of Sound and Vibration, 7(3), pp. 417 430, 1968.

[5] McConnell, K.G. and Chang, C.N., A Study of the Axial-Torsional Coupling

Effect on a Sagged Transmission Line, Experimental Mechanics, 26, pp. 324 329, 1986.

[6] Gopalakrishnan, S., Martin, M.T. and Doyle, J.F., A Matrix Methodology for

Spectral Analysis of Wave Propagation in Multiple Connected Timoshenko Beams,

Jourrml of Sound and Vibration, pp. 11 24, 1992.

[7] Gopalakrishnan, S. and Doyle, J.F., Wave Propagation in Connected Waveguides

of Varying Cross Section, Journal of Sound and Vibration, 175(3), pp. 347-363, 1994.

[8] Martin, M.T., Gopalakrishnan, S. and Doyle, J.F., Wave Propagation in Multi-

ply Connected Deep Waveguides, Journal of Sound and Vibration, 174(4), pp. 521 538,
1994.

[9] Gendy, A.S. and Saleeb, A.F., Vibrational Analysis of Coupled Exten-

sional/Flexural/Torsional Modes of Curved Beams with Arbitrary Thin-walled Sec-

tions, Journal of Sound and Vibration, 174(2), pp. 261-274, 1994.

[10] Yang, S.Y. and Sin, H.C., Curvature-Based Beam Elements for the Analysis of

Timoshenko and Shear-Deformable Curved Beams, Journal of Sound and Vibration,

187(4), pp. 569 584, 1995.

[11] Doyle, J.F., Wave Propagation in Structures, 2/E, Springer-Verlag, New York, 1997.

[12] Doyle, J.F., Static and Dynamic Analysis of Structures, Kluwer, The Netherlands,
1991.

[13] Doyle, J.F. and Farris, T.N., A Speetrally Formulated Finite Element for Wave

Propagation in 3-D Frame Structures, International Journal of Analytical and Exper-

imental Modal Analysis, 5, pp. 223 237, 1990.

[14] Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, Dover,

New York, 1965.

[15] Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., Numer-

ical Recipes, 2nd ed., Cambridge University Press, Cambridge, 1992.

72



[16] Gould, P.L., Analysis of Plates and Shells, Springer-Verlag, New York, 1988.

[17] Leissa, A.W., Vibration of Shells, NASA SP-288, 1973.

[18] Markus, S., Mechanics of Vibrations of Cylindrical Shells, Elsevier, New York, 1988.

[19] Rizzi, S.A. and Doyle, J.F., Spectral Analysis of Wave Motion in Plane Solids with

Boundaries, Journal of Vibration and Acoustics, 114, pp. 133 140, 1992.

[20] Rizzi, S.A. and Doyle, J.F., A Spe(:tral Element Approach to Wave Motion ill

Layered Solids, Journal of Vibration and Acoustics, 114, pp. 569 577, 1992.

[21] Danial, A.N. and Doyle, J.F., Dynamic Response of Folded Plate Structures on a

Massively Parallel Computer, Journal of Computers and Structures, 54, pp. 521 529,
1995.

[22] Danial, A.N., Rizzi, S.A. and Doyle, J.F., Dynamic Analysis of Folded Plate

Structures, Journal of Vibration and Acoustics, 118, pp. 591 598, 1996.

[23] Hinton, E., Ozakca, M., and Rao, N.V.R., Free Vibration Analysis and Shape

Optimization of Variable Thickness Plates, Prismatic Folded Plates and Curved Shells.

Part 1: Finite Strip Formulation, Journal of Sound and Vibration, 181(4), pp. 553 566,
1995.

[24] Reissner, E., Stress and Displacement of Shallow Spherical Shells, Journal of Math-

ematical Physics, 25(1), pp. 80 85, 1946.

[25] Naghdi, P.M. and Berry, J.G., On the Equations of Motion of Cylindrical Shells,

Journal of Applied Mechanics, 21(2), pp. 160 166, 1964.

[26] Bilodeau, B.A., Application of Spectral Element Method to Interior Noise Problems,

M.S. Thesis, Purdue University, 1995.

[27] Danial, A.N. and Doyle, J.F., 35"ansve, rse hnpact of Damped Plates Near a Straight

Edge, Journal of Vibration and Acoustics, 117, pp. 103 108, 1995.

[28] Danial, A.N. and Doyle, J.F., A Massively Parallel hnt)lementation of the Sl)ee-

tral Element Method for hnI)act Problems in Plate Structures, Computing Systems in

Engineering, 5, Pt). 375 388, 1994.

[29] Langley, R.S., Wave Motion and Energy Flow in Cylindrical Shells", Journal of

Sound and Vibration, 169(1), pp. 29 42, 1994.

[30] Crighton, D.G., Dowling, A.P., Ffowcs Williams, J.E., Heckl, M. and Lep-

pington, F.G., Modern Methods in Analytical Acoustics: Lecture Notes, Springer-

Verlag, Berlin, 1992.

[31] Fahy, F.J., Sound and Structural Vibration: Radiation, Transmission and Response,

Academic Press, New York, 1985.

[32] Junger, M.C. and Felt, D., Sound, Structures, and their Interaction, MIT Press,

Cambridge, 1986.

[33] Norton, M.P., Fundamentals of Noise and Vibration Analysis for Engineers, Cam-

bridge Uniw_rsity Press, Cambridge, 1989.

[34] Crighton, D.G., The 1988 Rayleigh Medal Lecture: Fluid Loading The Interaction

between Sound and Vibration, .Journal of Sound and Vibration, 133(1), Pt)-1 27, 1989.

[35] Crighton, D.G., The Free and Forced Waves on a Fluid-loaded Elastic Plate, Journal

of Sound and Vibration, 63(2), pp. 225 235, 1979.

73



[36] Crighton, D.G. and Innes, D., Low Frequency Acoustic Radiation and Vibration

Response of Locally Excited Fluid-Loaded Structures, Journal of Sound and Vibration,

91(2), pp. 293-314, 1983.

[37] Nayak, P.R., Line Admittance of Infinite Isotropic Fluid-Loaded Plates, Journal of

Acoustical Society of America, 47(1), pp. 191 201, 1970.

74



75



REPORT DOCUMENTATION PAGE Fo_ Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215Jefferson Davis Highway, Suite 12_4_Ar_ing_n_vA222_2-43_2'and_the_ice_fManagementandBudget_Paperw_rkReductiOn Pro_ect(0704o0188),

Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 2000 Contractor Report

4. TITLE AND SUBTITLE

Application of the Spectral Element Method to Acoustic Radiation

6. AUTHOR(S)

James F. Doyle

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)
School of Aeronautics and Astronautics

Purdue University
West Lafayette, IN 47907

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 2368 I-2199

5. FUNDING NUMBERS

538-03-14-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA/CR- 2000-210642

11. SUPPLEMENTARY NOTES

This work was performed under NASA Grant NAG 1-1749. Dr. Stephen A. Rizzi of the Structural Acoustics
Branch at NASA Langley Research Center was the technical monitor.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassi fied-Unlimited

Subject Category 71 Distribution: Standard
Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report summarizes research to develop a capability for analysis of interior noise in enclosed structures when
acoustically excited by an external random source. Of particular interest was the application to the study of noise
and vibration transmission in thin-walled structures as typified by aircraft fuselages. Three related topics are

focused upon. The first concerns the development of a curved frame spectral element, the second shows how the

spectral element method for wave propagation in folded plate structures is extended to problems involving
curved segmented plates. These are of significance because by combining these curved spectral elements with
previously presented flat spectral elements, the dynamic response of geometrically complex structures can be
determined. The third topic shows how spectral elements, which incorporate the effect of fluid loading on the
structure, are developed for analyzing acoustic radiation from dynamically loaded extended plates.

14.SUBJECTTERMS

Spectral element method, deep curved beam, cylindrical shells, acoustic

radiation, interior noise

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIRCATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15, NUMBER OF PAGES

81

16. PRICE CODE

A05

20. LIMITATION

OF ABSTRACT

UL

NSN 7540-01-280-5500

76

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z-39-18
298-102


